skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Dakai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 6, 2026
  2. Free, publicly-accessible full text available May 6, 2026
  3. Free, publicly-accessible full text available June 18, 2026
  4. Fault tolerance, energy management, and quality of service (QoS) are essential aspects for the design of real-time embedded systems. In this work, we focus on exploring methods that can simultaneously address the above three critical issues under standby-sparing. The standby-sparing mechanism adopts a dual-processor architecture in which each processor plays the role of the backup for the other one dynamically. In this way, it can provide fault tolerance subject to both permanent and transient faults. Due to its duplicate executions of the real-time jobs/tasks, the energy consumption of a standby-sparing system could be quite high. With the purpose of reducing energy under standby-sparing, we proposed three novel scheduling schemes: The first one is for (1, 1)-constrained tasks, and the second one and the third one (which can be combined into an integrated approach to maximize the overall energy reduction) are for general (m,k)-constrained tasks that require that among anykconsecutive jobs of a task no more than (k-m) out of them could miss their deadlines. Through extensive evaluations and performance analysis, our results demonstrate that compared with the existing research, the proposed techniques can reduce energy by up to 11% for (1, 1)-constrained tasks and 25% for general (m,k)-constrained tasks while assuring (m,k)-constraints and fault tolerance as well as providing better user perceived QoS levels under standby-sparing. 
    more » « less
  5. For real-time computing systems, energy efficiency, Quality of Service, and fault tolerance are among the major design concerns. In this work, we study the problem of reliable and energy-aware fixed-priority (m,k)-deadlines enforcement with standby-sparing. The standby-sparing systems adopt a primary processor and a spare processor to provide fault tolerance for both permanent and transient faults. In order to reduce energy consumption for such kind of systems, we proposed a novel scheduling scheme under the QoS constraint of (m,k)- deadlines. The evaluation results demonstrate that our proposed approach significantly outperformed the previous research in energy conservation while assuring (m,k)-deadlines and fault tolerance for real-time systems. 
    more » « less
  6. For real-time computing systems, energy efficiency, Quality of Service, and fault tolerance are among the major design concerns. In this work, we study the problem of reliable and energy-aware fixed-priority (m,k)-deadlines enforcement with standby-sparing. The standby-sparing systems adopt a primary processor and a spare processor to provide fault tolerance for both permanent and transient faults. In order to reduce energy consumption for such kind of systems, we proposed a novel scheduling scheme under the QoS constraint of (m,k)- deadlines. The evaluation results demonstrate that our proposed approach significantly outperformed the previous research in energy conservation while assuring (m,k)-deadlines and fault tolerance for real-time systems. 
    more » « less